Variance Calculator
×
Advertisement

How does Variance Calculator work?


To find the variance using the variance calculator, follow the below steps:

  • Select the population or sample variance
  • Input the comma-separated values of the data set.
  • Hit The "Calculate" Button.
  • Use the "Reset" button to calculate new values.

Give Feedback What do you think of variance calculator?

worst-feedback Worst
poor-feedback Poor
average-feedback Average
good-feedback Good
excellent-feedback Excellent
Send Feedback
Tick Icon Feedback Submitted Successfully.




Variance Calculator

Variance calculator finds the variance of sample and population data values with steps. The sample variance calculator also provides the standard deviation, mean, and sum of squares. 


What is a Variance?


In statistics, the variance is the measure of dispersion i.e., measure the spread of data values from the expected value. It is the expectation of the squared deviation of a random variable from its sample or population mean.

It is denoted by s2 and σ2 for sample and population data respectively.


Variance Formula


The formula for the sample variance is:

Sample variance formula

The formula for the population variance is:

population variance formula


How to calculate the variance?


Below are a few examples of variance solved by our mean and variance calculator.


Example 1: For sample variance


Find the variance of the given sample data.

2, 4, 7, 12, 15

Solution

Step 1: Calculate the sample mean of the given data.

Sample mean = x̅ = Σx/n

Sample mean = x̅ = [2 + 4 + 7 + 12 + 15]/5

Mean = x̅ = 40/5

Mean = x̅ = 8

Step 2: Now measure the dispersion and squares of deviation.

Data values (x)xi - x̅(xi - x̅)2
22 – 8 = -6(-6)2 = 36
44 – 8 = -4(-4)2 = 16
77 – 8 = -1(-1)2 = 1
1212 – 8 = 4(4)2 = 16
1515 – 8 = 7(7)2 = 49

Step 3: Find the summation of the squared deviations.

Σ(xi - x̅)2 = 36 + 16 + 1 + 16 + 49

Σ(xi - x̅)2 =  118

Step 4: Now divide the sum of squares by n-1.

Σ(xi - x̅)2/n-1 = 118/5-1

Σ(xi - x̅)2 / n-1 = 118/4

Σ(xi - x̅)2 / n-1 = 29.5


Example 2: For population variance


Find the variance of the given population data.

1, 14, 19, 25, 26, 35

Solution

Step 1: Calculate the population mean of the given data.

Population mean = µ = Σx/n

= [1 + 14 + 19 + 25 + 26 + 35]/6

= 120/6

= 20

Step 2: Now measure the dispersion and squares of deviation.

Data values (x)

xi - µ

(xi - µ)2

1

1 – 20 = -19

(-19)2 = 361

14

14 – 20 = -6

(-6)2 = 36

19

19 – 20 = 1

(1)2 = 1

25

25 – 20 = 5

(5)2 = 25

26

26 – 20 = 6

(6)2 = 36

35

35 – 20 = 15

(15)2 = 225

Step 3: Find the summation of the squared deviations.

Σ(xi - µ)2 = 361 + 36 + 1 + 25 + 36 + 225

Σ(xi - µ)2 =  684

Step 4: Now divide the sum of squares by n.

Σ(xi - µ)2/n = 684/6

Σ(xi - µ)2/n = 136.8



Frequently Asked Questions

How to find population variance?

 To calculate the population variance, you can use the formula:


Where:

·       𝑁: The size of the population

·       𝜇: The population mean


References


Wikimedia Foundation. (2022, June 20). What is a variance? Wikipedia. 

Recent Blogs

Blog Img 1 year ago

F Critical Value: Definition, formula, and Calculations

Read More arrow-right
Blog Img 1 year ago

T Critical Value: Definition, Formula, Interpretation, and Examples

Read More arrow-right
Blog Img 1 year ago

Understanding z-score and z-critical value in statistics: A comprehensive guide

Read More arrow-right